
i 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Investment Intelligence 
Systems Corporation 
 
 
 
 
 
 
 
 

JSheet Java Server Pages Custom Tags 
 
 
 
 
 
 
 
 
 
 
 
Version 1 
November 2002 



ii 

Copyright Information 
 
Copyright 2001, Investment Intelligence Systems Corporation. All Rights Reserved. 
 
The information contained in this manual and accompanying software program is copyrighted and all its rights are 
reserved by Investment Intelligence Systems Corporation (IISC).  IISC reserves the right to make periodic 
modifications of this product without obligation to notify any person or entity of such revision.  Copying, 
duplicating, selling, or otherwise distributing any part of this product without the prior consent of an authorized 
representative of IISC is prohibited. 
 
JSheet and HyperSheet are registered trademarks of Investment Intelligence Systems Corporation. 
 
Disclaimer of Warranties 
 
The software and users manuals are provided “as is” and without express or limited warranty of any kind by either 
IISC or anyone who has been involved in the creation, production, or distribution of the software, including, but not 
limited to the implied warranties of the merchantability and fitness for a particular purpose.  The entire risk as to 
quality and performance of the software and users manuals is with you.  Should the software and users manuals 
prove defective, you (and IISC or anyone else who has been involved in the creation, production, or distribution of 
the software) assume the entire cost of all necessary servicing, repairs, or correction. 
 
Some states do not allow the exclusion of implied warranties, so the above exclusion may not apply to you. 
 
Limitation of Liability 
 
In no event will IISC or any other person involved in the creation, production, or distribution of the software be 
liable to you on account of any claim for any damages, including any lost profits, lost savings, or other special, 
incidental, consequential, or exemplary damages, including but not limited to any damages assessed against or paid 
by you to any third party, arising out of the use, inability to use, quality, or performance of such software and users 
manuals, even if IISC or any other such person or entity has been advised of the possibility for such damages, or for 
any claim by any party. 
 
In addition, IISC or any other person involved in the creation, production, or distribution of the software shall not 
be libel for any claim by you or any other party for damages arising out of the use, inability to use, quality, or 
performance of such software and users manuals, based upon principals of contract warranty, negligence, strict 
liability for the negligence of IISC or other tort, breach of any statutory duty, principals of indemnity or 
contribution, the failure of any remedy to achieve its essentials purpose, or otherwise. Some states do not allow the 
limitation or exclusion of liability for incidental or consequential damages, so the above limitation may not apply to 
you.



iii 

INTRODUCTION ...................................................................................................................................................... 1 
ABOUT THIS MANUAL............................................................................................................................................... 1 
BEFORE YOU BEGIN .................................................................................................................................................. 1 

CHAPTER 1................................................................................................................................................................ 3 
REQUIREMENTS ......................................................................................................................................................... 3 

Server-side Requirements ..................................................................................................................................... 3 
Client-side Requirements...................................................................................................................................... 3 

JSHEET JSP CUSTOM TAGS COMPONENT OVERVIEW ................................................................................................ 4 
Basic JSheet JSP Custom Tags............................................................................................................................. 4 
JSheet JSP Custom Tags and the JSheet Load Balancer...................................................................................... 5 
JSheet JSP Custom Tags, JSheet Load Balancer in a Load Balanced Environment............................................ 6 

DEPLOYMENT ............................................................................................................................................................ 8 
CHAPTER 2................................................................................................................................................................ 9 

GETTING STARTED .................................................................................................................................................... 9 
FILE LOCATIONS........................................................................................................................................................ 9 
ERROR HANDLING ................................................................................................................................................... 10 
CUSTOM TAG ATTRIBUTES...................................................................................................................................... 10 
DEFINING PASS-THROUGH ATTRIBUTES.................................................................................................................. 11 
ACCESSING THE JSHEET CLIENT WITHIN THE JSP PAGE ........................................................................................... 11 
WORKING WITH THE JSHEETTAGLIBRARY.PROPERTIES FILE .................................................................................. 12 

CHAPTER 3: THE JSHEET CUSTOM TAGS .................................................................................................... 14 
BUTTON ................................................................................................................................................................... 14 
CHART ..................................................................................................................................................................... 16 
CHECKBOX............................................................................................................................................................... 19 
COMBOBOX.............................................................................................................................................................. 22 
CONNECT ................................................................................................................................................................. 26 
DATABASE ............................................................................................................................................................... 30 
DATE........................................................................................................................................................................ 32 
EXECUTEQUERY....................................................................................................................................................... 34 
EXECUTESCRIPT ....................................................................................................................................................... 35 
FETCHINTO............................................................................................................................................................... 36 
FORM ....................................................................................................................................................................... 38 
HIDDEN .................................................................................................................................................................... 40 
IFMODE .................................................................................................................................................................... 42 
IFSUBMITTED / IFNOTSUBMITTED ............................................................................................................................. 44 
IMAGE...................................................................................................................................................................... 46 
LISTBOX................................................................................................................................................................... 48 
PASSWORD............................................................................................................................................................... 52 
QUERY ..................................................................................................................................................................... 54 
RADIO ...................................................................................................................................................................... 55 
STATIC ..................................................................................................................................................................... 59 
TABLE...................................................................................................................................................................... 61 
TEXT ........................................................................................................................................................................ 64 
TEXTAREA ............................................................................................................................................................... 67 
TIME ........................................................................................................................................................................ 70 



1 

Introduction 

About This Manual 
This reference manual provides information about including JSheet custom tags in your JSP (Java Server Pages) 
files.  When you include these custom tags, dynamic HTML is generated in your application programmatically via 
Java. 
 
This Manual contains this Introduction and three chapters. 
 
Chapter 1: Requirements & Component Overview; lists the system requirements, gives an overview of the 
components and covers deploying the JSheet JSP Custom Tags. 
Chapter 2: Getting Started; describes the environment in which you include .jsp files 
Chapter 3: JSheet JSP Custom Tags, an alphabetical reference to each custom tag. 

Before You Begin 
This manual assumes that you have a basic understanding of HTML tags and attributes and know how to build a 
web page.  Before you can implement JSP pages in your web application, you must have installed: 

• JSheet Server. 
• A web server/JSP/Servlet engine suite that supports JSP1.1 and servlets 2.2. 

 
Some web servers have JSP support built-in.  Other web servers must add JSP support.  Some JSP engines include a 
web server.  Most web servers that understand JSP look for a specific filename extension.  Typically, any filename 
that ends in .jsp is interpreted and processed by the JSP engine.  The JSP engine needs a java compiler in order to 
process .jsp pages.  If the web server and JSP/Servlet engine are external to each other, they must be able to 
communicate with each other. 
 
It is important to note that many of the concepts discussed in this document including  properties file, WEB-INF 
directory, TLD, web.xml file, tag-lib uri and others are not specific to JSheet and if any of these concepts are 
covered in this document, it will be only briefly; if at all.  There are several books that contain detailed information 
on JSP applications in general. 
 
For information about your JSP/Servlet environment, consult your system administrator. 



2 

 
 
 
 
 
 
JSheet JSP Custom Tags 



3 

Chapter 1 

Requirements 
The requirements to use JSheet JSP Custom tags can be divided into two distinct sections; server-side requirements 
and client-side requirements. 

Server-side Requirements 
The Java Server Pages environment itself is very flexible as is the JSheet environment.  The components below 
could be run on a single machine or even multiple machines.  It is possible to use the JSheet JSP Custom Tags in a 
load balanced environment as well.   
 
Due to this flexibility, it is not feasible to specify hardware requirements.  Each component will have it’s individual 
hardware requirements.  Suffice it to say, the machine(s) should meet or exceed the hardware requirements for the 
most demanding component. 
 
The following server-side components are required for the JSheet JSP Custom Tags: 

• JSheet Server 1.0.7 or higher 
• A Web Server 
• JSP/Servlet engine that supports JSP1.1 and servlets 2.2 such as Tomcat, JRun or Web Logic 
• Java 1.2.2 or higher 

 
As mentioned before, some JSP/Servlet engines have a built in Web Server in which case a separate Web Server 
will not be required. 
 
If your company will utilize a firewall between JSheet Server and the JSP/Servlet engine, certain ports will be 
required to be opened. 
 

Component Connection Type Inbound Port Outbound Port Range 
JSheet Server TCP/IP 5000 1024 - 65535 

JSheet Server/CORBA Bi-directional IIOP 1572 1024 - 65535 
 
The inbound ports listed above are configurable in the JSServer Preferences.  The TCP/IP to port 5000 by default is 
a straight TCP/IP connection to retrieve the IIOP connection port.  It can be configured to allow for use as an URL 
or file.  See the JSServer documentation for more specific on configuring these settings.  See the “JSheet JSP 
Connect Custom Tag” section in Chapter 3 for information on how to pass the settings to JSClient. 

Client-side Requirements 
The client-side is the side that is making the JSP page request to the web server.  There are no minimum hardware 
requirements for this side as long as the machine meets or exceeds the minimum hardware requirements for the 
browser specified below. 
 

• Microsoft Internet Explorer 5.0 or higher 
 



4 

JSheet JSP Custom Tags Component Overview 

Basic JSheet JSP Custom Tags 

Web Server

JSServer

Unique HTTP Sessions

CORBA connection
Ex1.jsp, EX2.jsp, EX3.jsp

JSP/Servlet Engine

Servlet
Ex2.jsp

Servlet
Ex1.jsp

Servlet
Ex3.jsp

http://www.../Ex1.jsp http://www.../Ex2.jsp http://www.../Ex3.jsp

IOR

 
 
Prior to making any references to JSServer’s CORBA objects, JSClient retrieves the JSServer IOR.  By default this 
is done with a straight TCP/IP socket connection to JSServer over port 5000. 
 
It is important to note that the connection to JSServer is made via custom tag generated Servlets in the JSP/Servlet.  
Therefore, there will not be a unique CORBA connection for each JSP client, and multiple client requests may use 
the same connection. 
  
The CORBA connection duration is dependent upon how your JSP/Servlet engine manages the duration of the 
HTTP Session.  In the reference implementation of JSP/Servlet engines (Tomcat) once a CORBA connection is 
made by the JSP/Servlet engine it will be re-used until all HTTP Sessions no longer exist. 
 
As with any servlet & CORBA implementation, settings in the JSP/Servlet engine can affect the CORBA 
connection duration.  For example, if the JSP/Servlet engine is set to cache HTTP Sessions, the CORBA connection 
may never be destroyed.  Setting the HTTP Session time out value too high or too low can impact the CORBA 
Connection as well.  The CORBA connection duration may also be impacted by setting the time out value in the 
JSheet JSP Connect Custom tag as it determines the HTTP Session duration. 
 



5 

JSheet JSP Custom Tags and the JSheet Load Balancer 

Web Server

JSServer

Unique HTTP Sessions

CORBA connection

JSServer

JSServer

JSP/Servlet Engine

Servlet
Ex2.jsp

Servlet
Ex1.jsp

Servlet
Ex2.jsp

JSheet
Load

Balancer

http://www.../Ex1.jsp http://www.../Ex2.jsp http://www.../Ex3.jsp

IOR

IOR

E
x1.jsp

Ex2.jsp, Ex3.jsp

 
 
Prior to making any references to JSServer’s CORBA objects, JSClient retrieves the JSServer IOR.  By default this 
is done with a straight TCP/IP socket connection to JSServer over port 5000.  When using the JSheet Load 
Balancer, each JSServer is launched making it's IOR known to the JSheet Load Balancer.  The JSheet Load 
Balancer then distributes the IOR of the next JSServer in a "round-robin" fashion for each connection request.  By 
default, the Load Balancer retrieves the IOR’s via a TCP/IP socket on port 5001. 
 
It is important to note that the connection to JSServer is made via custom tag generated Servlets in the JSP/Servlet.  
Therefore, there will not be a unique CORBA connection for each JSP client, and multiple client requests may use 
the same connection. 
 
A connection to a different JSServer will not be established until the existing CORBA connection is destroyed, at 
which time the JSheet Load Balancer will issue the CORBA IOR of the "next" JSServer.  This setup creates a 
psuedo "redundant server" situation ensuring that a connection to a JSServer can be made as long as there is at least 
one JSServer running and reachable.  This should not to be confused with a "fail-over" configuration as one cannot 
specify that a JSServer be the primary, secondary or tertiary JSServer. 
 
The CORBA connection duration is dependent upon how your JSP/Servlet engine manages the duration of the 
HTTP Session.  In the reference implementation of JSP/Servlet engines (Tomcat) once a CORBA connection is 
made by the JSP/Servlet engine it will be re-used until all HTTP Sessions no longer exist. 
 
As with any servlet & CORBA implementation, settings in the JSP/Servlet engine can affect the CORBA 
connection duration.  For example, if the JSP/Servlet engine is set to cache HTTP Sessions, the CORBA connection 
may never be destroyed.  Setting the HTTP Session time out value too high or too low can impact the CORBA 
Connection as well.  The CORBA connection duration may also be impacted by setting the time out value in the 
JSheet JSP Connect Custom tag as it determines the HTTP Session duration. 
 



6 

JSheet JSP Custom Tags, JSheet Load Balancer in a Load Balanced Environment 
 

JSServer

Unique HTTP Sessions

CORBA connection - Ex1.jsp

JSServer

JSServer

JSP/Servlet Engine
------

Web Server

Servlet
Ex1.jsp

JSheet
Load

Balancer
http://www.../Ex2.jsp

http://www.../Ex3.jsp

http://www.../Ex1.jsp

JSP/Servlet Engine
------

Web Server

Servlet
Ex2.jsp

JSP Servlet Engine
------

Web Server

Servlet
Ex3.jsp

CORBA connection - Ex2.jsp

CORBA connection - Ex3.jsp

Load Balancer
BIG-IP, Zeus, etc.

Unique HTTP Session

IOR

 
 
Prior to making any references to JSServer’s CORBA objects, JSClient retrieves the JSServer IOR.  By default this 
is done with a straight TCP/IP socket connection to JSServer over port 5000.  When using the JSheet Load 
Balancer, each JSServer is launched making it's IOR known to the JSheet Load Balancer.  The JSheet Load 
Balancer then distributes the IOR of the next JSServer in a "round-robin" fashion for each connection request.  By 
default, the Load Balancer retrieves the IOR’s via a TCP/IP socket on port 5001. 
 
It is important to note that the connection to JSServer is made via custom tag generated Servlets in the JSP/Servlet.  
Therefore, there will not be a unique CORBA connection for each JSP client, and multiple client requests may use 
the same connection. 
 
Using a Load Balancer or Multiplexer to distribute HTTP traffic to a server farm in conjunction with the JSheet 
Load Balancer, causes each JSP/Servlet engine to request a JSServer IOR from the JSheet Load Balancer.  A 
connection to a different JSServer will not be established until the existing CORBA connection for that JSP/Servlet 
engine is destroyed, at which time the JSheet Load Balancer will issue the CORBA IOR of the "next" JSServer if 
another connection to JSServer is required. 
 
The CORBA connection duration  is dependent upon how your JSP/Servlet engine manages the duration of the 
HTTP Session.  In the reference implementation of JSP/Servlet engines (Tomcat) once a CORBA connection is 
made by the JSP/Servlet engine it will be re-used until all HTTP Sessions no longer exist. 
 
As with any servlet & CORBA implementation, settings in the JSP/Servlet engine can affect the CORBA 
connection duration.  For example, if the JSP/Servlet engine is set to cache HTTP Sessions, the CORBA connection 
may never be destroyed.  Setting the HTTP Session time out value too high or too low can impact the CORBA 



7 

Connection as well.  The CORBA connection duration may also be impacted by setting the time out value in the 
JSheet JSP Connect Custom tag as it determines the HTTP Session duration. 



8 

Deployment 
The JSheet JSP Custom Tags are distributed as a deployable standard web archive file (.war) named 
JSheetCustomTags.war. 
 
Deploying the JSheetCustomTag.war file itself depends upon the JSP/Servlet engine you have chosen. 
 
Below is a minimalistic overview of deploying the JSheetCustomTags.war file on the Tomcat and JRun JSP/Servlet 
engines. 

• Tomcat:  Place the JSheetCustomTag.war file in the “webapps” directory within the Tomcat directory.  
Restarting Tomcat will cause Tomcat to find the JSheetCustomTag.war file and automatically create the 
directory structure and place the files correctly within it. 

 
• JRun:  In the JRun Management Console, you can run the “Edit/Create/Deploy and Remove Applications” 

wizard to deploy the JSheetCustomTag.war file. 
 
The above examples are by no means indicative of the only JSP/Servlet engine you can deploy JSheet JSP Custom 
Tags on, nor does it give complete instructions. 
 
How you deploy them in your environment will be specific to your JSP/Servlet engine and may be more complex if 
you are deploying or integrating them into an existing application rather than creating an application from the 
ground up.  Refer to the documentation that came with your JSP/Servlet engine for specific information on 
deploying “web archive files”. 
 
The URL’s below contain information that may help increase your understanding of JSP Custom Tags in general 
and how to work with them. 
 
http://java.sun.com/products/jsp/taglibraries.html 
 
http://java.sun.com/webservices/docs/1.0/tutorial/index.html 
 
 
 

http://java.sun.com/products/jsp/taglibraries.html
http://java.sun.com/webservices/docs/1.0/tutorial/index.html


9 

Chapter 2 

Getting Started 
In a JSP page, a custom tag is prefixed with a unique name that distinguishes the tag as a custom tag.  The Taglib 
Directive is used to assign that unique prefix name and to point to what is called the Tag Library Descriptor.  The 
Tag Library Descriptor describes the semantics of the custom tags.  Below is an example of a Taglib Directive: 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
In the above example we create a prefix by using the Taglib Directive’s prefix attribute.  The prefix attribute is set 
to “jsheet”.  The location of the Tag Library Descriptor is established through the uri attribute.  In this case we 
set it to “/JSheetExamples”.  The uri attribute value must match the value used in the <taglib-uri> of the 
web.xml file. 
 
Now that the prefix and Tag Library Descriptor have been established, we can use the custom tags by prefixing 
“jsheet:” to them.  Below is an example of how to use the button custom tag with the defined jsheet prefix: 

<jsheet:button/> 
 

Naturally, since the Taglib Directive sets the structure for the remaining page, the Taglib Directive must appear 
above all custom tags in the JSP page. 

Example 
<html> 
<body> 
 
<!-- This is the taglib directive.--> 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<!--Since the taglib directive sets the prefix to 'jsheet' all custom tags will have 
'jsheet:' prefixed to them. --> 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 openbookname="/JSheetExamples/examples.jss"> 
<jsheet:form>  
<jsheet:button/>  
</jsheet:form> 
</jsheet:connect> 
</body>  
</html> 

File Locations 
Since JSheet Custom Tag classes are in the JSheet.jar and the JSheetTagLibrary Server.jar, the JSP/Servlet 
engine needs to be able to locate these two archives.  This is generally accomplished by putting the JSheet.jar and 
the JSheetTagLibraryServer.jar in the classpath.  The default location for this is ApplicationName/WEB-
INF/lib/. 
 
If using the thin client proxy in interactive mode, the JSheetTagLibraryClient.jar must be placed in the same 
directory as the serving jsp page. The default location for this is the top level directory of the web application. 
 
If using the full JSClient applet in interactive mode, the JSheet.jar file must be in a location available to the 
applet.  The default location for this is the top level directory of the web application. 
 



10 

The web.xml file describes the mapping between the taglib uri and the location of the Tag Library Descriptor. The 
default location for this file is ApplicationName/WEB-INF/. 
 
The Tag Library Descriptor (TLD) is an XML document that maps action tags to tag handler classes. The 
web.xml elements <taglib-uri> or <tablib-location> may specify where the TLD can be found.  The 
default location for this file is ApplicationName/WEB-INF/{taglibrary}.tld. 

Error Handling 
The first time a JSP page is loaded, it is compiled.  Compilation errors (if any) will be displayed by the JSP/Servlet 
engine. 
 
Validation errors are returned at runtime.  Although JSP processing does not attempt to check for every possible 
error condition, common errors will be caught and meaningful error messages will be displayed on the generated 
web page.  If a JSP page contains an invalid value that is not explicitly checked by JSP processing, JSheet will 
throw a standard Java exception to indicate the error.  The JSP tag handler will then capture that exception and 
display the error message as part of its generated web page. 

Custom Tag Attributes 
Most JSP custom tags have attributes.  For each JSP custom tag that has attribute(s), some may be required.  For 
required attributes, you must specify a value. Use lowercase text for all tag names and attributes. 
 
To assign a value to an attribute, you can: 

• Hardcode the value directly in the JSP page. 
• Include attribute value pairs in the URL used to load the .jsp file.  You can use this technique for any 

attribute except the name attribute. 
 
Most of the custom tags have a name attribute.  The tag name attribute will be assigned a default value if you do 
not explicitly give it a value.  You can use this tag name when you assign tag attribute values with an URL to 
associate the attribute values with the named tag.  The name attribute can also be used to write JavaScript code that 
accesses the specified tag.  The JavaScript code may then read the tag’s attribute values or it may update the tag’s 
attribute values. 
 
If specifying an attribute value as part of a URL, you may optionally prefix the attribute name with the tag name.  If 
the tag name qualifier is used, then the attribute assignment applies only to the named tag.  If the tag name prefix is 
omitted, then the attribute assignment applies to all tags that use the specified attribute.  Here is an example URL: 
 
http://mydomain.com/test.jsp?myButtonTag.action=save&sheet=0 
 
The above URL loads the JSP page named test.jsp from the site mydomain.com.  The JSP page test.jsp contains a 
button custom tag with the name attribute set to myButtonTag.  Below is how the tag should appear in test.jsp: 
 
<jsheet:button 
 name="myButtonTag"/> 
 
The button custom tag also has an action attribute.  Since the action attribute is not explicitly set in the above 
example, it is assigned is assigned the value save.  This was specified in the URL that loaded the JSP page test.jsp, 
with the following fragment: 
 
myButtonTag.action=save 
 
In addition, for each tag in test.jsp that contains a sheet attribute, the sheet attribute is assigned the value 0.  This 
was set in the URL with the following fragment: 
 
sheet=0 



11 

 
The following search order is used to determine the value of an attribute: 

• First, if the custom tag’s name is specified in the URL with an attribute and value, then that specific tag 
receives that specific attribute value.  So if the URL contains myButtonTag.action=submit, the custom 
tag named myButtonTag will be assigned the value submit for the action attribute.  If the tag’s name 
attribute value is not unique in the JSP page (i.e., there are more than one button tags are named 
myButtonTag), the assignment(s) are made to all tags with the same name. 

• Second, if an attribute value is defined in the URL without a tag name that attribute value is used for all 
custom tags on the page with that attribute.  So if the URL contains sheet=0, all tags with the sheet 
attribute will be assigned a value of 0.  The assignment is not applied to custom tags that do not have an 
associated sheet attribute. 

• Third, if the JSP page contains a custom tag block that assigns an attribute a value, then the value 
contained on the JSP page is used. 

• Finally, the default value as specified in the custom tag’s documentation is used. 

Defining Pass-Through Attributes 
Many of the JSP custom tags allow pass-through attributes.  The pass-through attributes are expected to work as 
specified by the generated tag's HTML 4.0 tag specification.  However, browsers typically implement only a subset 
of the HTML specification.  To ensure proper performance when using custom tags, you must check the 
specifications for your particular browser(s) before using the pass-through attributes. 

Accessing the JSheet client within the JSP page 
By using an instance of JSheet's JSClient class, you may write code that interacts with the JSheet server during the 
processing of the JSP custom tags.  To access an instance of JSClient, include this line of code in a JSP page: 
JSClient jsClient = (JSClient) session.getAttribute("jsclient"); 
 
You may then use the jsClient object to call any of the API methods in the JSClient class. 

Example 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<%@ page import="com.iisc.jwc.jsheet.*" %> 
<%@ page import="com.iisc.jwc.jsheet.db.JSDatabase" %> 
<%@ page import="com.iisc.jwc.jsheet.db.JSDbCursor" %> 
 
<html> 
<head> 
<title>Demo Database</title> 
</head> 
 
<jsheet:connect 
 sheet="0" 
 name="JSheetExamples" 
 openbookname="/JSPCustomTagExamples/Database.jss"> 
<% 
JSClient jsclient = (JSClient)session.getAttribute("jsclient"); 
try { 
 JSDatabase jsdb = jsclient.dbConnect("Text","",""); 
  
 JSDbCursor jsdbc; 
  
 jsdbc = jsdb.runQuery("Select * from EMP",false); 
  
 jsdbc.closeCursor(); 
} 
catch (Exception e) { 
 out.println("<p>Exception 1: " + e.toString() + "</p>"); 
 e.printStackTrace(); 
} 
%> 



12 

</jsheet:connect> 
</body> 
</html> 
IMPORTANT:  Since the custom tag handlers use that same instance of JSClient, do not change the state of the 
jsClient object. For example, closing the workbook or disconnecting from the server will all cause problems with 
JSP tag processing. 

Working with the JSheetTagLibrary.properties File 
You can use the JSheetTagLibrary.properties file to store various configuration settings.  In order for the 
JSP/Servlet engine to find the JSheetTagLibrary.properties file, it should typically be located in the WEB-
INF/classes directory.  The JSheetTagLibrary.properties is read only once when the JSP/Servlet engine is first 
started.  Any changes to the properties file after the engine has been started will require the JSP/Servlet engine to be 
restarted.  For more general information on the properties file, please see the documentation that came with your 
JSP/Servlet engine. 
 
In this file, many of the properties are prefixed with a name.  The name is provided by the connect and the 
database tag's name attribute.  For example, if the connect tag's name attribute is user1, then user1.host is 
searched for in the properties file to find the value of the host attribute.  Below is an example of how the connect 
tag will appear in order to use the JSheetTagLibrary.properties file attributes’ settings: 
<jsheet:connect 
 name="user1"> 

Since the name attribute is specified, the JSheetTagLibrary.properties file will be searched for all attributes 
prefixed with value of the name attribute. In the above example the JSheetTagLibrary.properties file will search 
for attributes that are prefixed with user1.  The following JSheetTagLibrary.properties file shows an example of 
property settings. 

user1.host=demo.jsheet.com 
user1.user=demo 
user1.password=demo 
user1.sessiontimeout=2 
user1.port=5001 
user1.dbname=myDatabase 
user1.dbuser=guest 
user1.dbpassword=guest 
chartservlet=ChartTagServlet 
jssupportpath=/jssupport 
 
The following table provides information about each property setting: 
 
Attribute Description 
name.host The host name for the machine where JSheet server is running. 
name.user The user name used for connecting with the JSheet server host. 
name.password The password used for connecting with the JSheet server host. 
name.jsclientproxyclient The servlet that the JSClientProxy applet needs to communicate with during interactive 

mode. This servlet is located in the JSheetTagLibraryServer.jar in the 
com.iisc.jsheet.taglib.servlets.JSClientProxy package. 

name.appletpoll How often, in seconds, the proxy applet automatically queries the proxy servlet for events 
in interactive mode. 

name.applet.name The name attribute of the JSClient applet. This is used if the full JSClient applet is desired 
for interactive mode. 

name.applet.codebase The URL or URI of the directory of the JSClient applet. 
name.sessiontimeout The timeout period, in minutes, for a session. 
name.port The port number for the machine where JSheet Server is running. 
name.dbname The name of the database to access. 



13 

name.dbuser The user name needed to access the specified database. 
name.dbpassword The password needed to access the specified database. 
jssupportpath The path to the JSheet support files (i.e., JavaScript, html, images). By default this is 

under a directory called jssupport. 
chartservlet The servlet with which the <chart> tag communicates. This servlet is located in the 

JSheetTagLibraryServer.jar the com.iisc.jsheet.taglib.servlets.ChartTagServlet package. 
 
When you explicitly specify property-related attributes within a JSheet custom tag block, the values you specify 
override values in the JSheetTagLibrary.properties file. 



14 

Chapter 3: The JSheet Custom Tags 

button 
Use this tag to create a button on a form. 

Syntax 
<jsheet:button 
 [name="string"] 
 [{type="button"} | {type="image" src="string"}] 
 [action={"reset" | "submit" | "save"}] 
 [click="string"] 
 [change="string"] 
 [classname="string"] 
 [pass through attributes]/> 
 
This tag must be nested inside a <form> </form> custom tag pair, and the <form> </form> custom tag pair must 
be nested inside a <connect> </connect> custom tag pair. 
 
In batch mode if the button action is "submit", the form is submitted when the user presses the button and the 
values are updated in the workbook.  If the button action is "save", the form is submitted when the user presses the 
button, the values are updated in the workbook, and the workbook is saved.  If the button action is "reset", the form 
controls are all reset to the value they originally contained. 
 
In interactive mode if the button action is "submit", an error will be displayed.  If the button action is "save", then 
pressing the button causes the workbook to be saved.  The action "reset" is not available in interactive mode. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as follows: if 

<submit> is the second JSP 
custom tag on the current page, 
the generated HTML <input> 
element is named tag2. 

The name of the generated input 
control. 

type No button The type of control to display. 
Valid values are image and button. 

src No None The file name of the image to use 
for the button. This is only valid if 
the type attribute is set to image. 

action No submit The action to perform when the 
button is clicked. Possible values 
are submit, reset and save. 

The values submit and reset are 
only available in batch mode. 

click No None The standard HTML attribute, 
onClick, is not available for use 
since it interferes with dynamic 
sheet updates. The attribute click 
replaces onClick. This attribute 
provides the same functionality but 
it is used differently. 

When in interactive mode, the 
attribute value for click must be the 



15 

name of a JavaScript function that 
returns a true or false value. If the 
return value of the function is true, 
the spreadsheet will be updated 
with the HTML control value. If the 
return value of the function is false, 
the spreadsheet will not be updated 
with the HTML control value. 

If the mode is batch, the attribute 
value defined will be placed into 
the standard HTML attribute 
onClick.  

classname No None This is to be used instead of the 
class passthrough attribute. 

 

Pass-Through Attributes 
The following optional attributes that are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but added to the generated <input 
type="submit"> tag exactly as they are entered. The attributes are expected to work as specified by the HTML 4.0 
<input type="submit"> tag specification 

accept, accesskey, align, alt, class (use classname instead), dir, disabled (use disabled="true"), id, ismap, lang, onblur, ondblclick, 
onfocus, onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, size, style, 
tabindex, title, usemap, value 

Example 
<html> 
<head> 
<title>Button</title> 
</head> 
<body> 
<h1>Button</h1> 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:form>  
 
<jsheet:button  
 action="submit"/>  
 
</jsheet:form>  
</jsheet:connect> 
 
</body> 
</html> 



16 

chart 
Use this tag to generate an <img> tag with its src attribute pointing to the chartservlet value. chartservlet contains 
the servlet that generates the chart. The result is a .gif image of a chart. The chart is specified by the chartname 
attribute or a combination of the charttemplate, range, height, and width attributes. 

Syntax 
<jsheet:chart 
 [name="string"] 
 [chartservlet="string"]  
 {{chartname="string"[height="nonnegative_int" width="nonnegative_int"]} 
 |{charttemplate="string"   range="string" height="nonnegative_int" width="nonnegative_int"}} 
 [sheet={"string" | "nonnegative_int"}] 
 [click="string"] 
 [autorefresh="boolean"] 
 [classname="string"] 
 [pass through attributes]/> 

This tag must be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as 

follows: if <chart> is 
the second JSP custom 
tag on the current 
page, the generated 
HTML <img> 
element is named tag2.

The name of the generated 
HTML <img> element. 

chartservlet No None The servlet that generates the 
chart. If this attribute is defined 
here, this value overrides the 
chartservlet setting in the 
properties file. 

chartname Only if the 
charttemplate and 
range attributes are not 
specified. 

None The name of an existing chart on 
the current book. 

height Only if the 
charttemplate and 
range attributes are 
specified, in which case,
you must also specify 
the width attribute. 

None A non-negative integer value that 
represents height in pixels of the 
chart image. If you specify the 
height attribute in conjunction 
with the chartname attribute, the 
chart image might be skewed. 

width Only if the charttem-
plate and range 
attributes are specified, 
in which case, you must 
also specify the height 
attribute. 

None A non-negative integer value that 
represents width in pixels of the 
chart image. If you specify the 
width attribute in conjunction 
with the chartname attribute, the 
chart image might be skewed. 

charttemplate Only if the chartname 
attribute is not 
specified.  
If you specify this 

None The path and name of the 
template file to use when creating 
the chart, such as an .xml file. 
This must be a location relative to 



17 

attribute, you must also 
specify the height, 
width, and range 
attributes. 

the JSServer workbook path. 

range Only if the charttem-
plate attribute is used or 
if the mode is equal to 
interactive. 

No The range that contains the data 
to chart. The range's value should 
be a cell range (i.e., B2..D4) or a 
valid range name. 

sheet No Setting from 
<connect> 

The sheet associated with the 
range’s attribute value. 
This value can be the index or the 
name of the sheet. Sheet indexes 
start at 0 for the first sheet. 

autorefresh No true This attribute is only valid in 
interactive mode. 
If true, then the control is updated 
whenever the control’s associated 
cell is changed in the applet. 
If false, then the control is not 
updated whenever the control’s 
associated cell is changed in the 
applet. 

click No None The standard HTML attribute, 
onClick, is not available for use 
since it interferes with dynamic 
sheet updates. The attribute click 
replaces onClick. This attribute 
provides the same functionality 
but is used differently. 

When in interactive mode, the 
attribute value for click must be 
the name of a JavaScript function 
that returns a true or false value. 
If the return value of the function 
is true, the spreadsheet will be 
updated with the HTML control 
value. If the return value of the 
function is false, the spreadsheet 
will not be updated with the 
HTML control value. 

If the mode is batch, the attribute 
value defined will be placed into 
the standard HTML attribute 
onClick.  

classname No None This is to be used instead of the 
class passthrough attribute. 

 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but added to the generated <img> tag 
exactly as they are entered. The attributes are expected to work as specified by the HTML 4.0 <img> tag 
specification: 

align, alt, border, class (use classname instead), dir, hspace, id, lang, longdesc, ondblclick, onkeydown, onkeypress, onkeyup, 



18 

onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, style, title, vspace. 

Example 
<html> 
<head> 
<title>Chart</title> 
</head> 
<body> 
<h1>Chart</h1> 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:chart  
 chartservlet="ChartTagServlet"  
 chartname="myfirstchart"  
 sheet="0" /> 
</jsheet:connect> 
 
</body> 
</html> 



19 

checkbox 
Use this tag to create a check box input control. 

Syntax 
<jsheet:checkbox 
 [name="string"] 
 [sheet={"string" | "non-negative_int"}] 
 cell="string" 
 [autorefresh="boolean"] 
 [updatesheet="boolean"] 
 [{labelcell="string" [labelsheet={"string" | "non-negative_int"}]}  
  | {labeltext="string"}] 
 [truevalue={"string" | "int"}] 
 [falsevalue={"string" | "int"}] 
 [click="string"] 
 [change="string"] 
 [classname="string"] 
 [pass through attributes]/> 

If the value in the check box control's associated cell is not equal to the truevalue or falsevalue attributes, the 
checkbox defaults to an unchecked state. 

This tag must be nested inside a <form> </form> custom tag pair, and the <form> </form> custom tag pair must 
be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as follows: if 

<checkbox> is the second JSP 
custom tag on the current 
page, the generated HTML 
<input> element is named 
tag2. 

The prefix of the generated <input> 
control. 

sheet No The value from the sheet 
attribute of the <connect> tag.

The sheet that contains the cell 
attribute’s value. This value can be 
the index or the name of the sheet. 
Sheet indexes start at 0 for the first 
sheet. 

cell Yes None The target cell to contain the selected 
checkbox value. This value should be 
a cell (i.e., A1 or R1C1) or a range 
name that references one cell. The 
sheet that contains the cell or range 
should be specified by the sheet 
attribute. 

autorefresh No True This attribute is only valid in inter-
active mode. 
If true, then the control is updated 
whenever the control’s associated 
cell is changed in the applet. 
If false, then the control is not 
updated whenever the control’s 
associated cell is changed in the 
applet. 



20 

labelcell No The value from the cell 
attribute. 

The cell that contains the label to be 
displayed to the right of the 
checkbox. This value should be a cell 
(i.e., A1 or R1C1) or a range name 
that references one cell. The sheet 
that contains the cell or range should 
be specified by labelsheet attribute. 
If you include this attribute, do not 
include the labeltext attribute. 

labelsheet No The value from the sheet 
attribute. 

The sheet that contains the labelcell 
attribute's value. This value can be 
the index or the name of the sheet. 
Sheet indexes start at 0 for the first 
sheet. 

labeltext No None The label to display instead of the 
label specified by the labelcell 
attribute. If you include this attribute, 
do not include the labelcell attribute. 

truevalue No 1 The value used to indicate that the 
checkbox is checked. 

falsevalue No 0 The value used to indicate that the 
checkbox is not checked. 

updatesheet No True This attribute is only valid in inter-
active mode. 

If this value is true, then the 
control’s associated applet cell is 
updated whenever the control is 
changed. 

If this value is false, then the 
control’s associated applet cell is not 
updated whenever the control is 
changed. 

click, change No None The standard HTML attributes, 
onClick and onChange, are not 
available for use because they 
interfere with dynamic sheet updates. 
The attributes click and change 
replace onClick and onChange. 
These attributes provide the same 
functionality but are used differently. 

When in interactive mode, the 
attribute value for click or change 
must be the name of a JavaScript 
function that will return a true or 
false value. If the return value of the 
function is true, the spreadsheet will 
be updated with the HTML control 
value. If the return value of the 
function is false, the spreadsheet will 
not be updated with the HTML 
control value. 

If the mode is batch, the function 
will be passed-through to the 
standard HTML attributes onClick 
and onChange.  



21 

classname No None This is to be used instead of the class 
passthrough attribute. 

 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but added to the generated <input 
type="checkbox"> tag exactly as they are entered: 

accept, accesskey, align, class (use classname instead), dir, disabled (use disabled=true), id, lang, onblur, ondblclick, onfocus, 
onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onselect, size, style, 
tabindex, title 

Example 
<html> 
<head> 
<title>CheckBox</title> 
</head> 
<body> 
<h1>CheckBox</h1> 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
  
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:form>  
 
<jsheet:checkbox  
 sheet="0" 
 cell="A5" 
 labelcell="A4"  
 labelsheet="0" 
 labeltext="selectionone" 
 truevalue="1"/> 
 
</jsheet:form> 
</jsheet:connect>  
 
</body> 
</html> 



22 

combobox 
Use this tag to create a combo box control on a form. 

Syntax 
<jsheet:combobox 
 [name="string"] 
 [sheet={"string" | "non-negative int"}] 
 cell="string"  
 [autorefresh="boolean"] 
 [updatesheet="boolean"] 
 {{valuerange="string" [valuesheet={"string" | "non-negative int"}]}  
  | {valuelist="string"}} 
 [{labelrange="string" [labelsheet={"string" | "non-negative int"}]}  
  | {labellist="string"}] 
 [click="string"] 
 [change="string"] 
 [classname="string"] 
 [pass through attributes]/> 

This tag must be nested inside a <form> </form> custom tag pair, and the <form> </form> custom tag pair must 
be nested inside a <connect> </connect> custom tag pair. 

valuerange and valuelist are mutually exclusive attributes. labelrange and labellist are also mutually exclusive 
attributes. The number of values in the valuerange/valuelist attribute takes precedence over the number of values 
in the labelrange/labellist attribute. Thus, the number of displayed labels is determined by the number of 
valuerange/valuelist values. 

If the valuerange/valuelist attribute contains more values than the labelrange/labellist attribute, then the extra 
values in the valuerange/valuelist attribute are used as "fill-ins" for the missing labels from the list of labels in the 
labelrange/labellist attribute. For example, if there are six values in the valuerange/valuelist attribute and only 
four values in the labelrange/labellist attribute, then the last two values in the valuerange/valuelist attribute are 
used as the last two labels. 

If the valuerange/valuelist attribute contains less values than the labelrange/labellist attribute, then the extra 
values in the labelrange/labellist attribute are ignored. For example, if there are ten values in the 
valuerange/valuelist attribute and eleven values in the labelrange/labellist attribute, then the last value in the 
labelrange/labellist attribute is not displayed. 

If valuerange|valuelist is specified and labelrange|labellist is not specified the items displayed in the combobox 
and the value written to the JSheet worksheet will be the same. If both the valuerange|valuelist and the 
labelrange|labelist attributes are specified, the items displayed in the combobox will be taken from 
labelrange|labellist. However, the actual value written the JSheet worksheet will be taken from the corresponding 
valuerange|valuelist attribute. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as follows: 

if <combobox> is the 
second JSP custom tag on 
the current page, the 
generated HTML <select> 
element is named tag2. 

The name of the generated <input> 
control. 

sheet No The value from the sheet 
attribute of the <connect> 

The sheet that contains the cell 
attribute’s value. This value can be 
the index or the name of the sheet. 



23 

tag. Sheet indexes start at 0 for the first 
sheet. 

cell Yes None The target cell to contain the selected 
combobox values. This value should 
be a cell (i.e., A1 or R1C1) or a 
range name that references one cell.  

autorefresh No true This attribute is only valid in inter-
active mode. 

If this value is true, then the control 
is updated whenever the control’s 
associated cell is changed in the 
applet. 

If this value is false, then the control 
is not updated whenever the control’s 
associated cell is changed in the 
applet. 

valuerange Only if the 
valuesheet 
attribute is 
specified and 
valuelist is not 
specified. 

None The range that contains the 
combobox values. This value should 
be a cell range (e.g., A1, R1C1, or 
A1..D4) or a range name.  
The range size should match the 
range size specified for the 
associated labelrange attribute. 

If the labelrange attribute is not 
defined, the valuerange values are 
displayed as the combobox items. 

It is the valuerange/valuelist value 
that is written to the cell.  
The sheet that contains this range is 
specified by the valuesheet attribute. 
If valuesheet is not defined, the 
sheet attribute value is used. If the 
sheet attribute is not defined, the 
value is taken from the connect tag’s 
sheet attribute. 

valuesheet Only if the 
valuerange 
attribute is 
specified. 

The value of the sheet 
attribute. 

The sheet that contains the 
valuerange’s attribute value. This 
value can be the index or the name of 
the sheet. Sheet indexes start at 0 for 
the first sheet. 

valuelist Only if the 
valuerange and 
valuesheet 
attributes are 
not specified. 

None The list of combobox values. Use a 
vertical bar ( | ) delimited list. For 
example: "house|car|business"  
The number of values specified here 
should match the number of values 
specified for the associated labellist 
attribute. 
If the labellist attribute is not 
defined, the valuelist values are 
displayed as the combobox items. 

The valuelist list item selected will 
be written to the JSheet worksheet. 

labelrange Only if the 
labelsheet 

The value of the 
valuerange attribute. 

The range that contains the labels to 
be displayed as the combobox items.  



24 

attribute is 
specified. 

This value should be a cell range 
(e.g., A1, R1C1, or A1..D4) or a 
range name.  
The range size should match the 
range size specified for the 
associated valuerange attribute. 
The sheet that contains this range is 
specified by the labelsheet attribute. 
If labelsheet is not defined, the sheet 
attribute value is used. If the sheet 
attribute is not defined, the value is 
taken from the connect tag’s sheet 
attribute. 

The labelrange value is simply the 
item displayed in the combox. The 
actual value written to the JSheet 
worksheet will be take from either 
valuerange or valuelist. 

labelsheet Only if the 
labelrange 
attribute is 
specified. 

The value of the valuesheet
attribute. 

The sheet that contains the label-
range’s attribute value. This value 
can be the index or the name of the 
sheet. Sheet indexes start at 0 for the 
first sheet.  

labellist Only if the 
labelrange and 
labelsheet 
attributes are 
not specified. 

None A list of labels to be displayed as the 
combobox items. Use a vertical bar ( 
| ) delimited list. For example: 
"house|car|business"  
The number of values specified here 
should match the number of values 
specified for the associated valuelist 
attribute. 

The labellist value is simply the item 
displayed in the combox. The actual 
value written to the JSheet worksheet 
will be take from either valuerange 
or valuelist. 

updatesheet No true This attribute is only valid in inter-
active mode. 

If this value is true, then the 
control’s associated applet cell is 
updated whenever the control is 
changed. 

If this value is false, then the 
control’s associated applet cell is not 
updated whenever the control is 
changed. 

click, change No None The standard HTML attributes, 
onClick and onChange, are not 
available for use because they 
interfere with dynamic sheet updates. 
The attributes click and change 
replace onClick and onChange. 
These attributes provide the same 
functionality but are used differently. 

When in interactive mode, the 



25 

attribute value for click or change 
must be the name of a JavaScript 
function that will return a true or 
false value. If the return value of the 
function is true, the spreadsheet will 
be updated with the HTML control 
value. If the return value of the 
function is false, the spreadsheet will 
not be updated with the HTML 
control value. 

If the mode is batch, the function 
will be passed-through to the 
standard HTML attributes onClick 
and onChange.  

classname No None This is to be used instead of the class 
passthrough attribute. 

 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but are added to the generated <select> 
tag exactly as they are entered. The attributes are expected to work as specified by the HTML 4.0 <select> tag 
specification: 

class (use classname instead), dir, disabled (use disabled="true"), id, lang, onblur, ondblclick, onfocus, onkeydown, onkeypress, 
onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, size, style, tabindex, title 

Example 
<html> 
<head> 
<title>ComboBox</title> 
</head> 
<body> 
<h1>ComboBox</h1> 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
  
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:form >  
 
<jsheet:combobox  
 sheet="0" 
 cell="A6" 
 valuelist="car|house|business"/> 
 
</jsheet:form> 
</jsheet:connect> 
 
</body> 
</html> 



26 

connect 
Use the <connect> </connect> tag pair to define the connection information for the page. This includes 
information about which book to open or create and the default sheet. 

Syntax 
<jsheet:connect 
 [name="string"] 
 [host="string"] 
 [user="string"] 
 [port="port"] 
 [password="string"] 
 [sheet={"string" | "nonnegative_int"}] 
 [{mode="batch" | "palm"} 
  | {mode="interactive" servlet="string" [appletpoll="nonnegative_int"]}  
  | {mode="interactive" applet="string"}] 
 {{openbookname="string" [shared="boolean"]} 
  | {newbookname="non-empty string" [shared="boolean"]} 
   | {newbookname="" [shared="false"]} 
  | {templatename="string" newbookname="non-empty string" [shared="boolean"]} 
  | {templatename="string" [newbookname=""] [shared="false"]}} 
 [timeout="nonnegative_int"] 
 [javascriptexceptions="boolean"] 
 [loadbalance=”boolean”] 
</jsheet:connect> 

For each JSP page, <connect> </connect> must surround all other JSP custom tags. This pair must not be nested 
inside any other custom tag pairs. Since interactive mode is dynamic, only one connect tag may have it’s mode as 
interactive per JSP page. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
applet No None The name attribute of the JSheet 

applet on the HTML page.  
If the applet attribute is not 
specified, then the thin applet 
(with no GUI) is automatically 
generated. The generated applet 
works in conjunction with the 
servlet that is specified in either 
the servlet attribute or the 
properties file. 

mode No batch If the mode attribute’s value is 
batch or is not specified, the JSP 
page does not generate an applet 
tag. In batch mode, when data is 
changed on the server, the HTML 
page does not dynamically update. 
Likewise, when data is changed 
on the HTML page, the server 
data does not dynamically update. 
The user’s entered values on the 
HTML page are submitted to the 
server when the submit button is 
clicked. Also, when the submit 
button is clicked, the HTML page 
is refreshed with data from the 



27 

server. 
If the mode attribute’s value is 
batch, then there should be a 
<submit> custom tag within a 
<form></form> custom tag pair. 
If the mode attribute’s value is 
interactive(i.e., interactive mode), 
then an HTML <applet> tag is 
generated. In interactive mode, 
when data is changed on the 
server, the HTML page 
dynamically updates. Likewise, 
when data is changed on the 
HTML page, the server data is 
automatically updated. 
If the mode attribute’s value is 
palm, then the tags will simulate a 
mode similar to batch mode. 
However, palm mode has been 
optimized for a Palm handheld 
device. 

name No tag1 Refers to the <connect> tag or is 
used as the prefix value found in 
the properties file. 

host No None The name of the JSheet Server 
host. If this attribute is defined 
here, this value overrides the host 
setting in the properties file. 

user No None The JSP servlet uses this username 
when connecting to the JSheet 
Server host. If this attribute is 
defined here, this value overrides 
the user setting in the properties 
file. 

password No None The JSP servlet uses this password 
when connecting to the JSheet 
Server host. If this attribute is 
defined here, this value overrides 
the password setting in the 
properties file. 

sheet No 0 The sheet in the book that you 
want to be used. This value can be 
the index or the name of the sheet. 
Sheet indexes start at 0 for the 
first sheet. 

openbookname No* None The name of an existing book that 
you want opened. Only one book 
can be opened.This will point to a 
location relative the JSServer 
path. 

shared No false True indicates that other users can 
open the same book collabo-
ratively. When users make 
changes to a book, other users can 
click the submit button to see 
those changes.   If the 



28 

loadbalance attribute is true, this 
attribute must be set to false. 

newbookname No* None The name of the new book to be 
created. Only one book can be 
created. To generate a new name 
rather than identify an existing 
name, specify the attribute as 
follows: newbookname="".  
If a book is opened shared, it must 
be given a name. 

templatename No* None The name of the template file to 
use when creating a new book.  

timeout No 30 The timeout period in minutes for 
a session. If this attribute is 
defined here, this value overrides 
the timeout setting in the 
properties file. 

servlet No None The name of the servlet in the 
form of a full URL. The servlet 
acts as the intermediary between 
the generated applet and the 
JSheet server.   
Normally specified in the 
properties file. 

appletpoll No 10 seconds How often, in seconds, the proxy 
applet automatically queries the 
proxy servlet for events.  
This is only valid in interactive 
mode. 

loadbalance No false Indicates whether server access is 
through the LoadBalancer or not.  
If this is true, the port number 
must match the LoadBalancer’s 
clientport parameter.   

javascriptexceptions No true True indicates that default JavaS-
cript exception handlers should be 
added to the HTML output. 

*NOTE: One of the three parameters: openbookname, newbookname, or templatename must be specified. 
 

Pass-Through Attributes 
This tag has no pass-through attributes. 

Example 
<html> 
<head> 
<title>Connect</title> 
</head> 
<body> 
<h1>Connect</h1> 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 host="demo.jsheet.com" 
 user="demo" 
 password="demo" 



29 

 sheet="0"  
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
</jsheet:connect> 
 
</body> 
</html> 



30 

database 
Use the <database> custom tag to establish a connection to an ODBC database. 

Syntax 
<jsheet:database 
 [name="string"] 
 [dbname="string"] 
 [dbuser="string"] 
 [dbpassword="string"]> 
</jsheet:database> 

This tag pair must be nested inside a <connect> </connect> custom tag pair. The <database> </database> custom 
tag pair should surround all JSP custom database tags. The current list of JSP custom database tags is as follows: 

<executequery>, <fetchinto> 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name no None The name associated with the 

database tag. 

dbname Yes None The name of the ODBC database. 

dbpassword Yes None The password for the database 
connection. 

dbuser Yes None The user name for the database 
connection. 

 

Pass-Through Attributes 
This tag has no pass-through attributes. 

Example 
<html> 
<head> 
<title>Database</title> 
</head> 
<body> 
<h1>Database</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 name="JSheetExamples" 
 openbookname="/JSPCustomTagExamples/example.jss" 
 sheet="0"> 
 
<jsheet:database 
 dbpassword="demo" 
 dbname="myDatabase" 
 dbuser="myDatabaseUser"> 
 
<jsheet:executequery> 
 Select * from myTable 
</jsheet:executequery> 
 
</jsheet:database> 
 



31 

</jsheet:connect> 
 
</body> 
</html> 



32 

date 
Use the <date> custom tag to display a date input control.  

Syntax 
<jsheet:date 
 [name="string"] 
 [sheet={"string" | "nonnegative int"}] 
 cell="string" 
 [showcellentry="boolean"] 
 [click="string"] 
 [change="string"] 
 [classname="string"] 
 [pass through attributes]/> 

This tag pair must be nested inside a <form> </form> custom tag pair. The <form> </form> custom tag pair 
should be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name no The default value is auto-

generated as follows. If 
<date> is the second JSP 
custom tag on the current 
page, then the generated 
HTML <input> element 
would be named tag2. 

Must be a valid JavaScript identifier 
- each character may be a letter, 
underscore, dollar sign, or digit, but 
the first character may not be a digit. 

sheet no Sheet setting from the 
<connect> tag. 

The sheet that contains the data to be 
written. This can either be the index 
or the name of the sheet. Sheet 
indexes start at 0 for the first sheet. 

cell yes None The cell that contains the data to be 
written.  
Cell’s value should be a reference 
(A1) or a range name. 
The specified cell’s value is used as 
the value of the generated text 
control’s value attribute. 

showcellentry no false If false the cell’s display is displayed 
in the control. For example, if the 
cell contained "=year(now())" then 
the current year will be displayed, 
not the "=year(now())" text. 
If true, then the cell’s entered value 
is displayed in the control. For 
example, if the cell contained 
"=year(now())" then the text 
"=year(now())" will be displayed not 
the current year. 

click, change No None The standard HTML attributes, 
onClick and onChange, are not 
available for use because they 
interfere with dynamic sheet updates. 
The attributes click and change 



33 

replace onClick and onChange. 
These attributes provide the same 
functionality but are used differently. 

When in interactive mode, the 
attribute value for click or change 
must be the name of a JavaScript 
function that will return a true or 
false value. If the return value of the 
function is true, the spreadsheet will 
be updated with the HTML control 
value. If the return value of the 
function is false, the spreadsheet will 
not be updated with the HTML 
control value. 

If the mode is batch, the function 
will be passed-through to the 
standard HTML attributes onClick 
and onChange.  

classname No None This is to be used instead of the class 
passthrough attribute. 

 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but added to the generated <input 
type="text"> tag exactly as they are entered. The attributes are expected to work as specified by the HTML 4.0 
<input type="text"> tag specification:  

accept, accesskey, align, class (use classname instead), dir, disabled (use disabled = "true"), id, lang, maxlength, onblur, ondblclick, 
onfocus, onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onfocus, 
onselect, readonly (use readonly="true"), size, style, tabindex, title 

Example 
<html> 
<head> 
<title>Date</title> 
</head> 
<body> 
<h1>Date</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 name="JSheetExamples" 
 openbookname="/JSPCustomTagExamples/example.jss" 
 sheet="0"> 
 
<jsheet:form> 
 
<jsheet:date 
 cell="R1C1"/> 
 
</jsheet:form> 
</jsheet:connect> 
 
</body> 
</html> 



34 

executequery 
Use the <executequery> custom tag to execute a query on the current database session. Execute query will only 
execute a query. It will not place the result set in the JSheet workbook. 

Syntax 
<jsheet:executequery> 
select * from myTable 
</jsheet:executequery> 

This tag pair must be nested inside a <database> </database> custom tag pair. The <database> </database> 
custom tag pair should be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
queryname no None A valid query name. This must have 

been previously established in the 
query tag.  

 

Pass-Through Attributes 
This tag has no pass-through attributes. 

Example 
<html> 
<head> 
<title>ExecuteQuery</title> 
</head> 
<body> 
<h1>ExecuteQuery</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 name="JSheetExamples" 
 openbookname="/JSPCustomTagExamples/example.jss" 
 sheet="0"> 
 
<jsheet:database 
 dbpassword="demo" 
 dbname="myDatabase" 
 dbuser="myDatabaseUser"> 
 
<jsheet:executequery> 
Select * from myTable 
</jsheet:executequery> 
 
</jsheet:database> 
 
</jsheet:connect> 
 
</body> 
</html> 



35 

executescript 
Use the <executescript> custom tag to execute JavaScript on the JSServer. The body of the <executescript> tag is 
sent to the server to be executed. 

Syntax 
<jsheet:executescript> 
 myJavaScript 
</jsheet:executescript> 

This tag pair must be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP 
This tag has no attributes. 

Pass-Through Attributes 
This tag has no pass-through attributes. 

Example 
<html> 
<head> 
<title>ExecuteScript</title> 
</head> 
<body> 
<h1>ExecuteScript</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 name="JSheetExamples" 
 openbookname="/JSPCustomTagExamples/example.jss" 
 sheet="0"> 
 
<jsheet:executescript> 
 myjavascript 
</jsheet:executescript> 
 
</jsheet:connect> 
 
</body> 
</html> 
 



36 

fetchinto 
Use the <fetchinto> custom tag to place the results of a database query into a cell of a sheet. 

Syntax 
<jsheet:fetchinto 
 [queryname="string"] 
 [sheet="string"] 
 cell="string" 
 [{mode="all" | "first" | "last"} | {mode="count" rows="non-negative_int"}]> 
</jsheet:fetchinto> 

This tag pair must be nested inside a <database> </database> custom tag pair. The <datatase> custom tag pair 
must be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
cell Yes None The location in the spreadsheet to 

place the result set. This must be a 
fully qualified name formatted as: 
BookName.jss:SheetName!A2. A 
range may also be used instead of a 
single cell. If a range is used and the 
range is smaller than the result set, 
the result set will be truncated.  

mode No all The type of fetch to perform  

queryname No None The name of the query. This must be 
a valid query as defined by the query 
tag. 

rows No all The number of rows to return if 
mode has been specified as "count" 

sheet No The sheet setting from the 
<connect> tag. 

The sheet in the workbook where the 
result of the query will be placed. 

 

Pass-Through Attributes 
This tag has no pass-through attributes. 

Example 
<html> 
<head> 
<title>Fetchinto</title> 
</head> 
<body> 
<h1>Fetchinto</h1> 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:database 



37 

 dbuser="demo" 
 dbpassword="demo" 
 dbname="myDatabase"> 
 
<jsheet:fetchinto 
 cell="A1"> 
 select * from myTable 
</jsheet:fetchinto> 
 
</jsheet:database> 
 
</jsheet:connect> 
 
</body> 
</html> 



38 

form 
Use the <form> </form> custom tag pair to generate an HTML form. 

Syntax 
<jsheet:form 
 [name=”string”] 
 [action="string"] 
 [charset="string"]  
 [click="string"] 
 [classname="string"] 
 [pass through attributes]> 
</jsheet:form> 

This tag pair must be nested inside a <connect> </connect> custom tag pair. The <form> </form> custom tag pair 
should surround all JSP custom tag input controls.  

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as 

follows: if <form> is 
the second JSP custom 
tag on the current page, 
the generated HTML 
<form> attribute name 
is tag2. 

The name attribute of the 
generated <form> tag. 

action No Current JSP page Indicates the URL to process after 
processing has completed for this 
page.  
Since there is no form submittal in 
interactive mode, this attribute is 
only available in batch and palm 
modes. 

charset No UTF-8 This is to be used instead of accept-
charset. 

click No None The standard HTML attribute, 
onClick, is not available for use 
since it interferes with dynamic sheet 
updates. The attribute click replaces 
onClick. This attribute provides the 
same functionality but it is used 
differently. 

When in interactive mode, the 
attribute value for click must be the 
name of a JavaScript function that 
returns a true or false value. If the 
return value of the function is true, 
the spreadsheet will be updated with 
the HTML control value. If the 
return value of the function is false, 
the spreadsheet will not be updated 
with the HTML control value. 

If the mode is batch, the attribute 
value defined will be placed into the 



39 

standard HTML attribute onClick.  

classname No None This is to be used instead of the class 
passthrough attribute. 

 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but added to the generated <form> tag 
exactly as they are entered. The attributes are expected to work as specified by the HTML 4.0 <form> tag 
specification. 

accept-charset (use charset instead), class (use classname instead), dir, enctype, id, lang, method, ondblclick, onkeydown, 
onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onreset, onsubmit, style, target, title 

Example 
<html> 
<head> 
<title>Form</title> 
</head> 
<body> 
<h1>Form</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSPExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:form >  
 action="/JSPCustomTagExamples/myNextJspPage.jsp" 
</jsheet:form>  
 
</jsheet:connect> 
</body> 
</html> 



40 

hidden 
Use this tag to create a hidden input control on a form. A hidden tag is generally used to send information between 
the browser and server that you do not want displayed, such as HTML. 

Syntax 
<jsheet:hidden  
 [name="string"] 
 [sheet={"string" | "nonnegative int"}]  
 cell="string" 
 [autorefresh="boolean"/> 

This tag must be nested inside a <form> </form> custom tag pair, and the <form> </form> custom tag pair must be 
nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as follows: 

if <hidden> is the second 
JSP custom tag on the 
current page, the generated 
HTML <input> element is 
named tag2. 

The name of the generated <input> 
control. 

sheet No The value from the sheet 
attribute of the <connect> 
tag. 

The sheet that contains the cell 
attribute’s value. This value can be 
the index or the name of the sheet. 
Sheet indexes start at 0 for the first 
sheet. 

cell Yes none The cell that contains the HTML to 
be sent. This value should be a cell 
reference (A1 or R1C1) or a range 
name that indicates one cell.  

autorefresh No true This attribute is only valid in inter-
active mode. 

If this value is true, then the control 
is updated whenever the control’s 
associated cell is changed in the 
applet. 

If this value is false, then the control 
is not updated whenever the control’s 
associated cell is changed in the 
applet. 

 

Pass-Through Attributes 
This tag has no pass-through attributes. 

Example 
<html> 
<head> 
<title>Hidden</title> 
</head> 
<body> 



41 

<h1>Hidden</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:form>  
 
<jsheet:hidden  
 sheet="0" 
 cell="A7"/> 
 
</jsheet:form>  
</jsheet:connect> 
</body> 
</html> 



42 

ifmode 
The <ifmode> </ifmode> custom tag pair should be used as a marker to indicate whether its body should be 
processed or skipped. The <ifmode> body is processed only if the specified mode is valid and is the current mode 
as specified in the <connect> tag.  

Syntax 
<jsheet:ifmode  
 [name="string"] 
 [mode="string"]  
 cell="string"/> 

This tag must be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name no The default value is auto-

generated as follows. If 
<date> is the second JSP 
custom tag on the current 
page, then the generated 
HTML <input> element 
would be named tag2. 

Must be a valid JavaScript identifier 
- each character may be a letter, 
underscore, dollar sign, or digit, but 
the first character may not be a digit. 

mode Yes None If the mode from the connect tag 
matches the value of this attribute, 
the contents of the <ifmode> tag will 
be processed. 
Can contain one or more modes. The 
list is a vertical bar (|) delimited list. 
For example: "batch|palm".  

Valid values are batch, palm and 
interactive. 

 

Pass-Through Attributes 
This tag has no pass-through attributes. 

Example 
<html> 
<head> 
<title>Hidden</title> 
</head> 
<body> 
<h1>Hidden</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
  
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:ifmode> 



43 

 mode="interactive"> 
mode = interactive !! 
 
<jsheet:ifmode 
 mode="batch"> 
mode = batch !! 
 
</jsheet:ifmode> 
</jsheet:ifmode> 
 
</jsheet:connect> 
</body> 
</html> 



44 

ifsubmitted / ifnotsubmitted 
Use the <ifsubmitted> </ifsubmitted> tag pair when processing post methods. Use the <ifnotsubmitted> 
</ifnotsubmitted> custom tag pair to process get methods. Typically, these tag pairs are used to determine the 
processing of their event bodies when a form is submitted or not submitted. Since there is no form submittal in 
interactive mode, this custom tag pair is only available in batch and palm modes. 

Syntax 
<jsheet:ifsubmitted> 
event body 
</jsheet:ifsubmitted> 
 
 
<jsheet:ifnotsubmitted> 
event body 
</jsheet:ifnotsubmitted> 
 

This tag has no nesting requirements. 

Attributes Processed by JSP 
This tag has no attributes. 

Pass-Through Attributes 
This tag has no pass-through attributes. 

Example 
<html> 
<head> 
<title>If Submitted /If Not Submitted</title> 
</head> 
<body> 
<h1>If Submitted/If Not Submitted</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:form > 
 
<jsheet:ifnotsubmitted> 
 
<jsheet:hidden  
 sheet="0" 
 cell="A7"/> 
 
</jsheet:ifnotsubmitted> 
 
<jsheet:ifsubmitted> 
<jsheet:button  
 action="submit"/>  
 
</jsheet:ifsubmitted> 
 
</jsheet:form>  
</jsheet:connect> 



45 

 
</body> 
</html> 



46 

image 
Use this tag to display an image.  

Syntax 
<jsheet:image 
 [name="string"] 
 [sheet={"string" | "nonnegative int"}] 
 cell="string" 
 [autorefresh="boolean"] 
 [click="string"] 
 [classname="string"] 
 [pass through attributes]/> 

This tag must be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as follows: if 

<img> is the second JSP custom 
tag on the current page, the 
generated HTML <img> element 
is named tag2. 

The name of the generated <input> 
control. 

sheet No The value from the sheet attribute
of the <connect> tag. 

The sheet that contains the cell 
attribute’s value. This value can be 
the index or the name of the sheet. 
Sheet indexes start at 0 for the first 
sheet. 

cell Yes none The cell that contains the URL of 
the image to be displayed. This 
value should be a cell reference (A1 
or R1C1) or a range name that 
indicate one cell.  

autorefresh No true This attribute is only valid in inter-
active mode. 

If this value is true, then the control 
is updated whenever the control’s 
associated cell is changed in the 
applet. 

If this value is false, then the control 
is not updated whenever the 
control’s associated cell is changed 
in the applet. 

click No None The standard HTML attribute, 
onClick, is not available for use 
since it interferes with dynamic 
sheet updates. The attribute click 
replaces onClick. This attribute 
provides the same functionality but 
is used differently. 
When in interactive mode, the 
attribute value for click must be the 
name of a JavaScript function that 
returns a true or false value. If the 



47 

return value of the function is true, 
the spreadsheet will be updated with 
the HTML control value. If the 
return value of the function is false, 
the spreadsheet will not be updated 
with the HTML control value. 

If the mode is batch, the attribute 
value defined will be placed into the 
standard HTML attribute onClick. 

classname No None This is to be used instead of the 
class passthrough attribute. 

 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but added to the generated <img> tag 
exactly as they are entered. The attributes are expected to work as specified by the HTML 4.0 <img> tag 
specification: 

align, alt, border, class (use classname instead), dir, height, hspace, id, ismap, lang, longdesc, ondblclick, onkeydown, onkeypress, 
onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, style, title, usemap, vspace, width 

Example 
<html> 
<head> 
<title>Image</title> 
</head> 
<body> 
<h1>Image</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
  
<jsheet:connect 
 sheet="0" 
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2"> 
 
<jsheet:form> 
 
<jsheet:image  
 sheet="0" 
 cell="A8"/> 
 
</jsheet:form> 
</jsheet:connect> 
 
</body> 
</html> 



48 

listbox 
Use this tag to create a list box control on a form. 

Syntax 
<jsheet:listbox 
 [name="string"] 
 [sheet={"string" | "non-negative int"}] 
 cell="string" 
 [size="int>=2"] 
 [autorefresh="boolean"] 
 [updatesheet="boolean"] 
 {{valuerange="string" [valuesheet={"string" | "non-negative int"}]} | {valuelist="string"}} 
 [{labelrange="string"] [labelsheet={"string" | "non-negative int"}]} | {labellist="string"}] 
 [click="string"] 
 [change="string"] 
 [classname="string"] 
 [pass through attributes]/> 

This tag must be nested inside a <form> </form> custom tag pair, and the <form> </form> custom tag pair must 
be nested inside a <connect> </connect> custom tag pair. 

valuerange and valuelist are mutually exclusive attributes. labelrange and labellist are also mutually exclusive 
attributes. The number of values in the valuerange/valuelist attribute takes precedence over the number of values 
in the labelrange/labellist attribute. Thus, the number of displayed labels is determined by the number of 
valuerange/valuelist values. 

If the valuerange/valuelist attribute contains more values than the labelrange/labellist attribute, then the extra 
values in the valuerange/valuelist attribute are used as "fill-ins" for the missing labels from the list of labels in the 
labelrange/labellist attribute. For example, if there are six values in the valuerange/valuelist attribute and only 
four values in the labelrange/labellist attribute, then the last two values in the valuerange/valuelist attribute are 
used as the last two labels. 

If the valuerange/valuelist attribute contains less values than the labelrange/labellist attribute, then the extra 
values in the labelrange/labellist attribute are ignored. For example, if there are ten values in the 
valuerange/valuelist attribute and eleven values in the labelrange/labellist attribute, then the last value in the 
labelrange/labellist attribute is not displayed. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as follows: 

if <listbox> is the second 
JSP custom tag on the 
current page, the generated 
HTML <select> element is 
named tag2. 

The name of the generated <input> 
control. 

sheet No The value from the sheet 
attribute of the <connect> 
tag. 

The sheet that contains the cell 
attribute’s value. This value can be 
the index or the name of the sheet. 
Sheet indexes start at 0 for the first 
sheet. 

cell Yes none The target cell to contain the selected 
listbox values. This value should be a 
cell reference (A1 or R1C1) or a 
range name that indicates one cell.  



49 

autorefresh No true This attribute is only valid in inter-
active mode. 

If this value is true, then the control 
is updated whenever the control’s 
associated cell is changed in the 
applet. 

If this value is false, then the control 
is not updated whenever the control’s 
associated cell is changed in the 
applet. 

size No 4 Specifies the height of the list box. 
This value should be an integer >= to 
2. 

valuerange Only if the 
valuesheet 
attribute is 
specified. 

none The range that contains the listbox 
values. This value should be a cell 
range (e.g., A1, R1C1, or A1..D4) or 
a range name.  
The range size should match the 
range size specified for the 
associated labelrange attribute. 

If the labelrange attribute is not 
defined, the valuerange values are 
displayed as the listbox items. 
The sheet that contains this range is 
specified by the valuesheet attribute. 
If valuesheet is not defined, the 
sheet attribute value is used. If the 
sheet attribute is not defined, the 
value is taken from the connect tag’s 
sheet attribute. 

valuesheet Only if the 
valuerange 
attribute is 
specified. 

The value of the sheet 
attribute. 

The sheet that contains the 
valuerange’s attribute value. This 
value can be the index or the name of 
the sheet. Sheet indexes start at 0 for 
the first sheet. 

valuelist Only if the 
valuerange and 
valuesheet 
attributes are 
not specified. 

none The list of listbox values. Use a 
vertical bar ( | ) delimited list. For 
example: "house|car|business"  
The number of values specified here 
should match the number of values 
specified for the associated labellist 
attribute. 

If the labellist attribute is not 
defined, the valuelist values are 
displayed as the listbox items. 

labelrange Only if the 
labelsheet 
attribute is 
specified. 

The value of the 
valuerange attribute. 

The range that contains the labels to 
be displayed as the listbox items.  
This value should be a cell range 
(e.g., A1, R1C1, or A1..D4) or a 
range name.  
The range size should match the 
range size specified for the 
associated valuerange attribute. 
The sheet that contains this range is 



50 

specified by the labelsheet attribute. 
If labelsheet is not defined, the sheet 
attribute value is used. If the sheet 
attribute is not defined, the value is 
taken from the connect tag’s sheet 
attribute. 

labelsheet Only if the 
labelrange 
attribute is 
specified. 

The value of the valuesheet
attribute. 

The sheet that contains the label-
range’s attribute value. This value 
can be the index or the name of the 
sheet. Sheet indexes start at 0 for the 
first sheet.  

labellist Only if the 
labelrange and 
labelsheet 
attributes are 
not specified. 

none A list of labels to be displayed as the 
listbox items. Use a vertical bar ( | ) 
delimited list. For example: 
"house|car|business"  
The number of values specified here 
should match the number of values 
specified for the associated valuelist 
attribute. 

updatesheet No true This attribute is only valid in inter-
active mode. 

If this value is true, then the 
control’s associated applet cell is 
updated whenever the control is 
changed. 

If this value is false, then the 
control’s associated applet cell is not 
updated whenever the control is 
changed. 

click, change No None The standard HTML attributes, 
onClick and onChange, are not 
available for use because they 
interfere with dynamic sheet updates. 
The attributes click and change 
replace onClick and onChange. 
These attributes provide the same 
functionality but are used differently. 

When in interactive mode, the 
attribute value for click or change 
must be the name of a JavaScript 
function that will return a true or 
false value. If the return value of the 
function is true, the spreadsheet will 
be updated with the HTML control 
value. If the return value of the 
function is false, the spreadsheet will 
not be updated with the HTML 
control value. 

If the mode is batch, the function 
will be passed-through to the 
standard HTML attributes onClick 
and onChange.  

classname No None This is to be used instead of the class 
passthrough attribute. 

 



51 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but are added to the generated <select> 
tag exactly as they are entered. The attributes are expected to work as specified by the HTML 4.0 <select> tag 
specification: 

class (use classname instead), dir, disabled (use disabled="true"), id, lang, onblur, ondblclick, onfocus, onkeydown, onkeypress, 
onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, size, style, tabindex, title 

Example 
<html> 
<head> 
<title>ListBox</title> 
</head> 
<body> 
<h1>ListBox</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:form>  
 
<jsheet:listbox  
 sheet="0" 
 cell="A10" 
 valuelist="eastsales|westsales|southsales"/> 
 
</jsheet:form> 
</jsheet:connect> 
 
</body> 
</html> 



52 

password 
Use this tag to create a single password input control on a form. 

Syntax 
<jsheet:password 
 [name="string"] 
 [sheet={"string" | "nonnegative int"}] 
 cell="string" 
 [updatesheet="boolean"] 
 [click="string"] 
 [change="string"] 
   [classname=”string”] 
 [pass through attributes]/> 

This tag must be nested inside a <form> </form> custom tag pair, and the <form> </form> custom tag pair must 
be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP  
 

Attribute Required Default Value Description 
name No Auto-generated as 

follows: if <password> 
is the second JSP custom 
tag on the current page, 
the generated HTML 
<input> element is 
named tag2. 

The name of the generated <input> 
control. 

sheet No The value from the sheet 
attribute of the 
<connect> tag. 

The sheet that contains the cell attribute’s 
value. This value can be the index or the 
name of the sheet. Sheet indexes start at 0 
for the first sheet. 

cell Yes none The target cell to contain the password. If 
the control contains a string, the cell 
displays asterisks. Otherwise, the cell is 
empty. 
This value should be a cell reference (A1 
or R1C1) or a range name that indicates 
one cell.  

updatesheet No true This attribute is only valid in interactive 
mode. 

If this value is true, then the control’s 
associated applet cell is updated 
whenever the control is changed. 

If this value is false, then the control’s 
associated applet cell is not updated 
whenever the control is changed. 

click, change No None The standard HTML attributes, onClick 
and onChange, are not available for use 
because they interfere with dynamic sheet 
updates. The attributes click and change 
replace onClick and onChange. These 
attributes provide the same functionality 
but are used differently. 



53 

When in interactive mode, the attribute 
value for click or change must be the 
name of a JavaScript function that will 
return a true or false value. If the return 
value of the function is true, the spread-
sheet will be updated with the HTML 
control value. If the return value of the 
function is false, the spreadsheet will not 
be updated with the HTML control value. 

If the mode is batch, the function will be 
passed-through to the standard HTML 
attributes onClick and onChange.  

classname No None This is to be used instead of the class 
passthrough attribute. 

 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but added to the generated <input 
type="password"> tag exactly as they are entered. The attributes are expected to work as specified by the HTML 
4.0 <input type="password"> tag specification: 

accept, accesskey, align, class, dir, disabled (use disabled="true"), id, lang, maxlength, onblur, ondblclick, onfocus, onkeydown, 
onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onselect, readonly (use 
readonly="true"), size, style, tabindex, title 

Example 
<html> 
<head> 
<title>Password</title> 
</head> 
<body> 
<h1>Password</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:form >  
 
<jsheet:password  
 cell="A10"/> 
 
</jsheet:form> 
</jsheet:connect> 
 
</body> 
</html> 



54 

query 
Use the <query> custom tag to establish a relationship between a specific query and a queryname. The <query> 
</query> tag pair contains the SQL statement for the query. 

Syntax 
<jsheet:query 
 queryname="string"> 
select * from myTable 
</jsheet:query> 

This tag pair must be nested inside a <connect> </connect> custom tag pair.  

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
queryname Yes None The name of the query. 

Pass-Through Attributes 
This tag has no pass-through attributes. 

Example 
<html> 
<head> 
<title>Query</title> 
</head> 
<body> 
<h1>Query</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 name="JSheetExamples" 
 openbookname="/JSPCustomTagExamples/example.jss" 
 sheet="0"> 
 
<jsheet:database 
 dbpassword="demo" 
 dbname="myDatabase" 
 dbuser="myDatabaseUser"> 
 
<jsheet:query 
 queryname="SelectAll"> 
select * from myTable 
</jsheet:query> 
 
<jsheet:executequery 
 queryname="SelectAll"/> 
 
</jsheet:database> 
 
</jsheet:connect> 
 
</body> 
</html> 



55 

radio 
Use this tag to create a group of radio button input controls on a form. 

Syntax 
<jsheet:radio 
 [name="string"] 
 [sheet={"string" | "non-negative int"}] 
 cell="string" 
 [autorefresh="boolean"] 
 [updatesheet="boolean"] 
 {{valuerange="string" [valuesheet={"string" | "non-negative int"}]} | {valuelist="string"}} 
 [{labelrange="string"] 
 [labelsheet={"string" | "non-negative int"}]} | {labellist="string"}] 
 [click="string"] 
 [change="string"] 
 [classname="string"] 
 [pass through attributes]/> 

This tag must be nested inside a <form> </form> custom tag pair, and the <form> </form> custom tag pair must 
be nested inside a <connect> </connect> custom tag pair. 

valuerange and valuelist are mutually exclusive attributes. labelrange and labellist are also mutually exclusive 
attributes. The number of values in the valuerange/valuelist attribute takes precedence over the number of values 
in the labelrange/labellist attribute. Thus, the number of displayed labels is determined by the number of 
valuerange/valuelist values. 

If the valuerange/valuelist attribute contains more values than the labelrange/labellist attribute, then the extra 
values in the valuerange/valuelist attribute are used as "fill-ins" for the missing labels from the list of labels in the 
labelrange/labellist attribute. For example, if there are six values in the valuerange/valuelist attribute and only 
four values in the labelrange/labellist attribute, then the last two values in the valuerange/valuelist attribute are 
used as the last two labels. 

If the valuerange/valuelist attribute contains less values than the labelrange/labellist attribute, then the extra 
values in the labelrange/labellist attribute are ignored. For example, if there are ten values in the 
valuerange/valuelist attribute and eleven values in the labelrange/labellist attribute, then the last value in the 
labelrange/labellist attribute is not displayed. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as follows: 

if <radio> is the second 
JSP custom tag on the 
current page, the generated 
HTML <input> element is 
named tag2. 

The name of the generated <input> 
control. 

sheet No The value from the sheet 
attribute of the <connect> 
tag. 

The sheet that contains the cell 
attribute’s value. This value can be 
the index or the name of the sheet. 
Sheet indexes start at 0 for the first 
sheet. 

cell Yes none The target cell to contain the selected 
radio button value. This value should 
be a cell reference (A1 or R1C1) or a 
range name that indicates one cell.  



56 

autorefresh No true This attribute is only valid in inter-
active mode. 

If this value is true, then the control 
is updated whenever the control’s 
associated cell is changed in the 
applet. 

If this value is false, then the control 
is not updated whenever the control’s 
associated cell is changed in the 
applet. 

valuerange Only if the 
valuesheet 
attribute is 
specified. 

none The range that contains the radio 
button values. This value should be a 
cell range (e.g., A1, R1C1, or 
A1..D4) or a range name.  
The range size should match the 
range size specified for the 
associated labelrange attribute. 

If the labelrange attribute is not 
defined, the valuerange values are 
displayed as the radio button text. 
The sheet that contains this range is 
specified by the valuesheet attribute. 
If valuesheet is not defined, the 
sheet attribute value is used. If the 
sheet attribute is not defined, the 
value is taken from the connect tag’s 
sheet attribute. 

valuesheet Only if the 
valuerange 
attribute is 
specified. 

The value of the sheet 
attribute. 

The sheet that contains the 
valuerange’s attribute value. This 
value can be the index or the name of 
the sheet. Sheet indexes start at 0 for 
the first sheet. 

valuelist Only if the 
valuerange and 
valuesheet 
attributes are 
not specified. 

none The list of radio button values. Use a 
vertical bar ( | ) delimited list. For 
example: "house|car|business"  
The number of values specified here 
should match the number of values 
specified for the associated labellist 
attribute. 

If the labellist attribute is not 
defined, the valuelist values are 
displayed as the listbox items. 

labelrange Only if the 
labelsheet 
attribute is 
specified. 

The value of the 
valuerange attribute. 

The range that contains the labels to 
be displayed as the radio button text.  
This value should be a cell range 
(e.g., A1, R1C1, or A1..D4) or a 
range name.  
The range size should match the 
range size specified for the 
associated valuerange attribute. 
The sheet that contains this range is 
specified by the labelsheet attribute. 
If labelsheet is not defined, the sheet 
attribute value is used. If the sheet 
attribute is not defined, the value is 



57 

taken from the connect tag’s sheet 
attribute. 

labelsheet Only if the 
labelrange 
attribute is 
specified. 

The value of the valuesheet
attribute. 

The sheet that contains the label-
range’s attribute value. This value 
can be the index or the name of the 
sheet. Sheet indexes start at 0 for the 
first sheet.  

labellist Only if the 
labelrange and 
labelsheet 
attributes are 
not specified. 

none A list of labels to be displayed as the 
radio button text. Use a vertical bar ( 
| ) delimited list. For example: 
"house|car|business"  
The number of values specified here 
should match the number of values 
specified for the associated valuelist 
attribute. 

updatesheet No true This attribute is only valid in inter-
active mode. 

If this value is true, then the 
control’s associated applet cell is 
updated whenever the control is 
changed. 

If this value is false, then the 
control’s associated applet cell is not 
updated whenever the control is 
changed. 

click, change No None The standard HTML attributes, 
onClick and onChange, are not 
available for use because they 
interfere with dynamic sheet updates. 
The attributes click and change 
replace onClick and onChange. 
These attributes provide the same 
functionality but are used differently. 

When in interactive mode, the 
attribute value for click or change 
must be the name of a JavaScript 
function that will return a true or 
false value. If the return value of the 
function is true, the spreadsheet will 
be updated with the HTML control 
value. If the return value of the 
function is false, the spreadsheet will 
not be updated with the HTML 
control value. 

If the mode is batch, the function 
will be passed-through to the 
standard HTML attributes onClick 
and onChange.  

classname No None This is to be used instead of the class 
pass-through attribute. 

 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but added to the generated <input 



58 

type="radio"> tag exactly as they are entered. The <radio> custom tag generates a group of HTML <input> tags. 
The specified pass-through attributes are added to all of the <input> tags in the group: 

accept, accesskey, align, class (use classname instead), dir, disabled (use disabled="true"), id, lang, onblur, ondblclick, onfocus, 
onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, size, style, tabindex, 
title 

Example 
<html> 
<head> 
<title>RadioButton</title> 
</head> 
<body> 
<h1>RadioButton</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:form >  
 
<jsheet:radio  
 sheet="0" 
 cell="A13" 
 labelrange="M12..M15" 
 labelsheet="0" 
 valuerange="P12..P15" 
 valuesheet="0"/> 
 
</jsheet:form> 
</jsheet:connect> 
 
</body> 
</html> 



59 

static 
Use this tag to create a read-only field that displays text. 

Syntax 
<jsheet:static 
 [name="string"] 
 [sheet={"string" | "non-negative int"}] 
 cell="string" 
 [click="string"] 
 [classname="string"] 
 [pass-through attributes]/> 

This tag must be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as follows: 

if <static> is the second 
JSP custom tag on the 
current page, the generated 
HTML element is named 
tag2. 

The name of the generated <input> 
control. 

sheet No The value from the sheet 
attribute of the <connect> 
tag. 

The sheet that contains the cell 
attribute’s value. This value can be 
the index or the name of the sheet. 
Sheet indexes start at 0 for the first 
sheet. 

cell Yes none The cell that contains the text to be 
displayed. This value should be a cell 
reference (A1) or a range name.  

click No None The standard HTML attribute, 
onClick, is not available for use 
since it interferes with dynamic sheet 
updates. The attribute click replaces 
onClick. This attribute provides the 
same functionality but it is used 
differently. 

When in interactive mode, the 
attribute value for click must be the 
name of a JavaScript function that 
returns a true or false value. If the 
return value of the function is true, 
the spreadsheet will be updated with 
the HTML control value. If the 
return value of the function is false, 
the spreadsheet will not be updated 
with the HTML control value. 
If the mode is batch, the attribute 
value defined will be placed into the 
standard HTML attribute onClick.  

classname No None This is to be used instead of the class 
passthrough attribute. 



60 

 

Pass-through Attributes 
dir, class (use classname instead), id, lang, style, title, ondblclick, onmousedown, onmouseup, onmouseover, onmousemove, 
onmouseout, onkeypress, onkeydown, onkeyup 

Example 
<html> 
<head> 
<title>Static</title> 
</head> 
<body> 
<h1>Static</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2"> 
 
<jsheet:form> 
 
<jsheet:static  
 sheet="0" 
 cell="A25"/> 
 
</jsheet:form> 
</jsheet:connect> 
 
</body>  
</html> 



61 

table 
Use this tag to create a table with data from a sheet. 

Syntax 
<jsheet:table 
 [name="string"] 
 range="string" 
 [autorefresh="boolean"] 
 [updatesheet="boolean"] 
 [sheet={"string" | "nonnegative int"}] 
 [editablecells="string"] 
 [formattedcells="boolean"] 
 [click="string"] 
 [classname="string"] 
 [pass through attributes]/> 

The generated table is in the form of an HTML <table> element. HTML formatting tags are generated for each 
table cell such that they correspond to the format in the grid's associated cells. The table is generated automatically 
without explicitly having to define rows or columns. 

This tag must be nested inside a <connect> </connect> custom tag pair. In addition, if the editablecells attribute 
contains a non-empty string value, this tag must be nested inside a <form> </form> custom tag pair. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as 

follows: if <table> is the 
second JSP custom tag on 
the current page, the 
generated HTML element 
is named tag2. 

The name of the generated <table> 
element. 

range No The smallest top-left 
range that contains all the 
non-blank cells. 

The range of data to display in the 
table. This value should be a cell 
range (e.g., A1, R1C1, or A1..D4) or 
a range name. 

sheet No The value from the sheet 
attribute of the 
<connect> tag. 

The sheet that contains the range 
attribute’s value. This value can be 
the index or the name of the sheet. 
Sheet indexes start at 0 for the first 
sheet. 

autorefresh No true This attribute is only valid in inter-
active mode. 
If this value is true, then the control 
is updated whenever the control’s 
associated cell is changed in the 
applet. 

If this value is false, then the control 
is not updated whenever the control’s 
associated cell is changed in the 
applet. 

editablecells No none The cells to be editable in the 
generated table. The edits are written 
to the sheet and the sheet is updated. 



62 

This value must be a range of cells, a 
comma-delimited list of ranges, or a 
named range. Example: "r1c1" or 
"a1...d3, r1...t4" 

formattedcells No true HTML formatting tags are generated 
for each cell in the resulting table. 
The formats applied to the table are 
taken from the corresponding formats 
in the grid of the sheet. Formats from 
the sheet that are not supported by 
HTML are not generated, such as 
dashed line borders. 

updatesheet No true This attribute is only valid in inter-
active mode. 

If this value is true, then the control’s 
associated applet cell is updated 
whenever the control is changed. 

If this value is false, then the 
control’s associated applet cell is not 
updated whenever the control is 
changed. 

click No None The standard HTML attribute, 
onClick, is not available for use since 
it interferes with dynamic sheet 
updates. The attribute click replaces 
onClick. This attribute provides the 
same functionality but it is used 
differently. 

When in interactive mode, the 
attribute value for click must be the 
name of a JavaScript function that 
returns a true or false value. If the 
return value of the function is true, 
the spreadsheet will be updated with 
the HTML control value. If the return 
value of the function is false, the 
spreadsheet will not be updated with 
the HTML control value. 

If the mode is batch, the attribute 
value defined will be placed into the 
standard HTML attribute onClick.  

classname No None This is to be used instead of the class 
passthrough attribute. 

 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but added to the generated tag exactly 
as they are entered. The <table> tag generates an HTML <table> tag. Use the pass-through attributes as specified 
by the HTML 4.0 <table> tag specification: 

align, bgcolor, border, cellpadding, cellspacing, class (use classname instead), dir, frame, id, lang, ondblclick, onkeydown, 
onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, rules, style, summary, title, width 
 

Example 



63 

<html> 
<head> 
<title>Table</title> 
</head> 
<body> 
<h1>Table</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:table 
 range="K5..K15"  
 sheet="0" 
 formattedcells="true"/> 
 
</jsheet:connect> 
 
</body> 
</html> 



64 

text 
Use this tag to create a text input control on a form. 

Syntax 
<jsheet:text 
 [name="string"] 
 [sheet={"string" | "nonnegative int"}] 
 cell="string" 
 [autorefresh="boolean"] 
 [updatesheet="boolean"] 
 [showcellentry="boolean"] 
 [click="string"] 
 [change="string"] 
 [classname="string"] 
 [pass through attributes]/> 

This tag must be nested inside a <form> </form> custom tag pair, and the <form> </form> custom tag pair must 
be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP  
Attribute Required Default Value Description 
name No Auto-generated as 

follows: if <text> is the 
second JSP custom tag on 
the current page, the 
generated HTML <input>
element is named tag2. 

The name of the generated <input> 
control. 

sheet No The value from the sheet 
attribute of the <connect>
tag. 

The sheet that contains the cell 
attribute’s value.This value can be the
index or the name of the sheet. Sheet 
indexes start at 0 for the first sheet. 

cell Yes none The cell that contains the text to be 
displayed in the control. This value 
should be a cell reference (A1 or 
R1C1) or a range name that indicate 
one cell.  

autorefresh No true This attribute is only valid in inter-
active mode. 

If this value is true, then the control 
is updated whenever the control’s 
associated cell is changed in the 
applet. 

If this value is false, then the control 
is not updated whenever the control’s 
associated cell is changed in the 
applet. 

showcellentry No false If this value is false, the cell's display 
value is displayed in the control. For 
example, if the cell contained 
"=year(now())," the current year is 
displayed, not the "=year(now())" 
text. 

If this value is true, the cell's entered 
value is displayed in the control. For 



65 

example, if the cell contained 
"=year(now())," the "=year(now())" 
text is displayed, not the current year. 

updatesheet No true This attribute is only valid in inter-
active mode. 

If this value is true, then the control’s 
associated applet cell is updated 
whenever the control is changed. 

If this value is false, then the 
control’s associated applet cell is not 
updated whenever the control is 
changed. 

click, change No None The standard HTML attributes, 
onClick and onChange, are not 
available for use because they 
interfere with dynamic sheet updates. 
The attributes click and change 
replace onClick and onChange. 
These attributes provide the same 
functionality but are used differently. 

When in interactive mode, the 
attribute value for click or change 
must be the name of a JavaScript 
function that will return a true or 
false value. If the return value of the 
function is true, the spreadsheet will 
be updated with the HTML control 
value. If the return value of the 
function is false, the spreadsheet will 
not be updated with the HTML 
control value. 

If the mode is batch, the function 
will be passed-through to the 
standard HTML attributes onClick 
and onChange.  

classname No None This is to be used instead of the class 
passthrough attribute. 

 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but added to the generated <input 
type="text"> tag exactly as they are entered. The attributes are expected to work as specified by the HTML 4.0 
<input type="text"> tag specification: 

accesskey, align, class (use classname instead), dir, disabled (use disabled="true"), id, lang, maxlength, onblur, ondblclick, onfocus, 
onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onselect, readonly 
(use readonly="true"), size, style, tabindex, title 

Example 
<html> 
<head> 
<title>Text</title> 
</head> 
<body> 
<h1>Text</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 



66 

 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples"  
 shared="true"  
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2"> 
 
<jsheet:form> 
 
<jsheet:text  
 sheet="0"  
 cell="A30"  
 showcellentry="false"/> 
 
</jsheet:form> 
</jsheet:connect> 
 
</body> 
</html> 



67 

textarea 
Use this tag to create a text area input control on a form. 

Syntax 
<jsheet:textarea 
 [name="string"] 
 [sheet={"string" | "nonnegative int"}] 
 cell="string" 
 [autorefresh="boolean"] 
 [updatesheet="boolean"] 
 [showcellentry="boolean"] 
 [click="string"] 
 [change="string"] 
 [classname=”string”] 
 [pass through attributes]/> 

This tag must be nested inside a <form> </form> custom tag pair, and the <form> </form> custom tag pair must 
be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as 

follows: if <textarea> is 
the second JSP custom tag 
on the current page, the 
generated HTML 
<textarea> element is 
named tag2. 

The name of the generated <input> 
control. 

sheet No The value from the sheet 
attribute of the <connect>
tag. 

The sheet that contains the cell’s 
attribute value. This value can be the 
index or the name of the sheet. Sheet 
indexes start at 0 for the first sheet. 

cell Yes none The cell that contains the text to be 
displayed in the control. This value 
should be a cell reference (A1) or a 
range name where the range contains 
only one cell.  

autorefresh No true This attribute is only valid in inter-
active mode. 
If this value is true, then the control 
is updated whenever the control’s 
associated cell is changed in the 
applet. 
If this value is false, then the control 
is not updated whenever the control’s 
associated cell is changed in the 
applet. 

showcellentry No false If this value is false, the cell's display 
value is displayed in the control. For 
example, if the cell contained 
"=year(now())," the current year is 
displayed, not the "=year(now())" 
text. 



68 

If this value is true, the cell's entered 
value is displayed in the control. For 
example, if the cell contained 
"=year(now())," the "=year(now())" 
text is displayed, not the current year. 

updatesheet No true This attribute is only valid in inter-
active mode. 

If this value is true, then the control’s 
associated applet cell is updated 
whenever the control is changed. 

If this value is false, then the 
control’s associated applet cell is not 
updated whenever the control is 
changed. 

click, change No None The standard HTML attributes, 
onClick and onChange, are not 
available for use because they 
interfere with dynamic sheet updates. 
The attributes click and change 
replace onClick and onChange. 
These attributes provide the same 
functionality but are used differently. 

When in interactive mode, the 
attribute value for click or change 
must be the name of a JavaScript 
function that will return a true or 
false value. If the return value of the 
function is true, the spreadsheet will 
be updated with the HTML control 
value. If the return value of the 
function is false, the spreadsheet will 
not be updated with the HTML 
control value. 

If the mode is batch, the function 
will be passed-through to the 
standard HTML attributes onClick 
and onChange.  

classname No None This is to be used instead of the class 
passthrough attribute. 

 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but added to the generated <textarea> 
tag exactly as they are entered. The attributes are expected to work as specified by the HTML 4.0 <textarea> tag 
specification: 

accesskey, class (use classname instead), cols, dir, disabled (use disabled="true"), id, lang, onblur, ondblclick, onfocus, 
onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onselect, readonly 
(use readonly="true"), rows, style, tabindex, title 

Example 
<html> 
<head> 
<title>TextArea</title> 
</head> 
<body> 



69 

<h1>TextArea</h1> 
 
<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:form>  
 
<jsheet:textarea  
 sheet="0" 
 cell="A35" 
 showcellentry="false"/> 
 
</jsheet:form> 
</jsheet:connect> 
 
</body> 
</html> 



70 

time 
Use this tag to create a date input control on a form in either a web page or a Palm device. 

Syntax 
<jsheet:time 
 [name="string"] 
 [sheet={"string" | "nonnegative int"}] 
 cell="string" 
   [autorefresh="boolean"] 
 [updatesheet="boolean"] 
 [showcellentry="boolean"] 
 [click="string"] 
 [change="string"] 
 [classname="string"] 
 [pass through attributes]/> 

This tag must be nested inside a <form> </form> custom tag pair, and the <form> </form> custom tag pair must 
be nested inside a <connect> </connect> custom tag pair. 

Attributes Processed by JSP 
 

Attribute Required Default Value Description 
name No Auto-generated as 

follows: if <time> is the 
second JSP custom tag on 
the current page, the 
generated HTML <time> 
element is named tag2. 

The name of the generated <input> 
control. 

sheet No The value from the sheet 
attribute of the <connect>
tag. 

The sheet that contains the cell’s 
attribute value. This value can be the 
index or the name of the sheet. Sheet 
indexes start at 0 for the first sheet. 

cell Yes none The cell that contains the text to be 
displayed in the control. This value 
should be a cell reference (A1) or a 
range name where the range contains 
only one cell.  

autorefresh No true This attribute is only valid in inter-
active mode. 

If this value is true, then the control 
is updated whenever the control’s 
associated cell is changed in the 
applet. 

If this value is false, then the control 
is not updated whenever the control’s 
associated cell is changed in the 
applet. 

showcellentry No false If this value is false, the cell's display 
value is displayed in the control. For 
example, if the cell contained 
"=year(now())," the current year is 
displayed, not the "=year(now())" 
text. 

If this value is true, the cell's entered 



71 

value is displayed in the control. For 
example, if the cell contained 
"=year(now())," the "=year(now())" 
text is displayed, not the current year. 

updatesheet No true This attribute is only valid in inter-
active mode. 

If this value is true, then the control’s 
associated applet cell is updated 
whenever the control is changed. 

If this value is false, then the 
control’s associated applet cell is not 
updated whenever the control is 
changed. 

click, change No None The standard HTML attributes, 
onClick and onChange, are not 
available for use because they 
interfere with dynamic sheet updates. 
The attributes click and change 
replace onClick and onChange. 
These attributes provide the same 
functionality but are used differently. 

When in interactive mode, the 
attribute value for click or change 
must be the name of a JavaScript 
function that will return a true or 
false value. If the return value of the 
function is true, the spreadsheet will 
be updated with the HTML control 
value. If the return value of the 
function is false, the spreadsheet will 
not be updated with the HTML 
control value. 

If the mode is batch, the function 
will be passed-through to the 
standard HTML attributes onClick 
and onChange.  

classname No None This is to be used instead of the class 
passthrough attribute. 

 

Pass-Through Attributes 
The following optional attributes are passed through the JSP page generation phase without undergoing any 
changes. The attributes are not processed by the JSP page generation phase, but added to the generated <input> tag 
exactly as they are entered. The attributes are expected to work as specified by the HTML 4.0 <input> tag 
specification: 

accept, accesskey, align, class (use classname instead), dir, disabled (use disabled="true"), id, lang, maxlength, onblur, ondblclick, 
onfocus, onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onselect, 
readonly (use readonly="true"), size, style, tabindex, title. 

Example 
<html> 
<head> 
<title>Time</title> 
</head> 
<body> 
<h1>Time</h1> 
 



72 

<%@ taglib prefix="jsheet" uri="/JSheetExamples" %> 
 
<jsheet:connect 
 sheet="0"  
 name="JSheetExamples" 
 shared="true" 
 openbookname="/JSPCustomTagExamples/examples.jss" 
 timeout="2">  
 
<jsheet:form>  
 
<jsheet:time  
 sheet="0" 
 cell="A35"/> 
 
</jsheet:form> 
</jsheet:connect> 
 
</body> 
</html> 


